If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+27n-260=0
a = 5; b = 27; c = -260;
Δ = b2-4ac
Δ = 272-4·5·(-260)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-77}{2*5}=\frac{-104}{10} =-10+2/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+77}{2*5}=\frac{50}{10} =5 $
| X2-14x+31=63 | | 3+8x=-32x+x | | 15x^2-26x+5=0 | | 3+8x=32x+x | | 2x-1=11x-73# | | 1/5x+8=11 | | 60-9z=5z-10 | | 32-5x=8=8-9 | | 5x+1=8x-48 | | 32-5x=8=-109-7x | | 5+x=12+x | | 12x/3x=4 | | 15t-12=-42 | | 17-2x=-4(x+2)+1 | | Y=4e(3X^3-X) | | (78-31+33)x4/8=N | | Nx2-25+25+4=15 | | 2x+108=0 | | 1331n=14641 | | 24y-620=y-195/3 | | 82+84/6-4x4=N | | 150+5+75-3x15=N | | 24y-195=y-620/3 | | 4x5=25- | | 428=6x | | n5=32768 | | 10x+4=40x-24 | | 5x+25=50x-33 | | 6(5x-2+12=30 | | x3+15x2+150x-245=0 | | (x+1)/2x=10 | | 7x=51-2 |